Quasi-Modal Lattices

نویسندگان

  • Jorge E. Castro
  • Sergio A. Celani
چکیده

We introduce the class of bounded distributive lattices with two operators, and ∇, the first between the lattice and the set of its ideals, and the second between the lattice and the set of its filters. The results presented can be understood as a generalization of the results obtained by S. Celani.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributive Lattices with a Generalized Implication: Topological Duality

In this paper we introduce the notion of generalized implication for lattices, as a binary function⇒ that maps every pair of elements of a lattice to an ideal. We prove that a bounded lattice A is distributive if and only if there exists a generalized implication ⇒ defined in A satisfying certain conditions, and we study the class of bounded distributive lattices A endowed with a generalized im...

متن کامل

Canonical extensions, Esakia spaces, and universal models

In this paper we survey some recent developments in duality for lattices with additional operations paying special attention to Heyting algebras and the connections to Esakia’s work in this area. In the process we analyse the Heyting implication in the setting of canonical extensions both as a property of the lattice and as an additional operation. We describe Stone duality as derived from cano...

متن کامل

Semi-linear Varieties of Lattice-Ordered Algebras

We consider varieties of pointed lattice-ordered algebras satisfying a restricted distributivity condition and admitting a very weak implication. Examples of these varieties are ubiquitous in algebraic logic: integral or distributive residuated lattices; their {·}-free subreducts; their expansions (hence, in particular, Boolean algebras with operators and modal algebras); and varieties arising ...

متن کامل

Dual characterizations for finite lattices via correspondence theory for monotone modal logic

We establish a formal connection between algorithmic correspondence theory and certain dual characterization results for finite lattices, similar to Nation’s characterization of a hierarchy of pseudovarieties of finite lattices, progressively generalizing finite distributive lattices. This formal connection is mediated through monotone modal logic. Indeed, we adapt the correspondence algorithm ...

متن کامل

Priestley duality for (modal) N4-lattices

N4-lattices are the algebraic semantics of paraconsistent Nelson logic, which was introduced in [1] as an inconsistency-tolerant counterpart of the better-known logic of Nelson [7, 13]. Paraconsistent Nelson logic combines interesting features of intuitionistic, classical and many-valued logics (e.g., Belnap-Dunn four-valued logic); recent work has shown that it can also be seen as one member o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Order

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2004